Dynamic interaction between cardiac myosin isoforms modifies velocity of actomyosin sliding in vitro.

نویسندگان

  • M Sata
  • S Sugiura
  • H Yamashita
  • S Momomura
  • T Serizawa
چکیده

To study the functional significance of cardiac isomyosin heterogeneity, active sliding of actin-myosin was studied using two different types of in vitro motility assay systems: (1) a sliding actin filament assay, in which fluorescently labeled actin filaments were made to slide on a myosin layer attached to a glass coverslip, and (2) a myosin-coated bead assay, in which myosin-coated latex beads were made to slide on actin cables of an alga. Two different isomyosins were obtained from 3-week-old (V1) and hypothyroid (V3) rat hearts and were mixed to form solutions with various mixing ratios [V1/(V1 + V3)]. For these myosin mixtures, both ATPase activity and sliding velocity of actin-myosin were determined. As the relative content of V1 increased, both ATPase activity and velocity increased. However, in contrast to the linear relation between the mixing ratio and ATPase activity, the relation between the mixing ratio and sliding velocity was sigmoid, suggesting the existence of mechanical interaction between different isomyosins. To clarify the nature of this interaction, sliding velocity was measured for mixtures of V1 and p-N,N'-phenylene-dimaleimide-treated V1 myosin (pPDM-M). A convex relation was observed between the relative content of pPDM-M and velocity. Because pPDM-M is known to form a noncycling and weakly bound crossbridge with actin, it is expected to exert a constant internal load on V1, in contrast to the actively cycling V3. In conclusion, in actomyosin sliding, different isomyosins mechanically interact when they coexist. The interaction may be a dynamic one that cannot be explained by a simple load effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thick filament length and isoform composition determine self-organized contractile units in actomyosin bundles.

Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contracti...

متن کامل

The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus.

Skeletal muscle, during periods of exertion, experiences several different fatigue-based changes in contractility, including reductions in force, velocity, power output, and energy usage. The fatigue-induced changes in contractility stem from many different factors, including alterations in the levels of metabolites, oxidative damage, and phosphorylation of the myosin regulatory light chain (RL...

متن کامل

Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca2+-dependent manner

Muscle contraction, which is initiated by Ca2+, results in precise sliding of myosin-based thick and actin-based thin filament contractile proteins. The interactions between myosin and actin are finely tuned by three isoforms of myosin binding protein-C (MyBP-C): slow-skeletal, fast-skeletal, and cardiac (ssMyBP-C, fsMyBP-C and cMyBP-C, respectively), each with distinct N-terminal regulatory re...

متن کامل

Modulatory role of drebrin on the cytoskeleton within dendritic spines in the rat cerebral cortex.

Morphological changes in the dendritic spines have been postulated to participate in the expression of synaptic plasticity. The cytoskeleton is likely to play a key role in regulating spine structure. Here we examine the molecular mechanisms responsible for the changes in spine morphology, focusing on drebrin, an actin-binding protein that is known to change the properties of actin filaments. W...

متن کامل

How actin-myosin interactions differ with different isoforms of myosin.

The development of in vitro techniques for assaying the mechanical properties of individual actin-myosin interactions has provided investigators with a powerful tool to address questions about fundamental properties of the force-generating reactions that produce movement of cells or organelles within cells. These techniques are capable of measuring the force and/or displacement produced by the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 73 4  شماره 

صفحات  -

تاریخ انتشار 1993